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This  r epor t  summarizes t h e  work performed a t  t h e  Univers i ty  of 

V i rg in i a  on "Plicrogravity Nucleation and P a r t i c l e  Coagulation Experi-  

ments Support ,  under a g ran t  NAG 5-865 covering t h e  t ime per iod  through 

Play 1987.  

I I  

A hollow sphere model i s  developed t o  p r e d i c t  t h e  range of super-  

s a t u r a t i o n  ' r a t i o  va lues  f o r  r e f r a c t o r y  metal  vapors i n  a proposed 

experimental  nuc lea t ion  appara tus .  Since t h e  experiments a r e  t o  be 

c a r r i e d  ou t  i n  a microgravi ty  environment, t h e  model neg lec t s  t h e  

e f f e c t s  of convection and assumes t h a t  t h e  only t r a n s f e r  of vapors 

through a i n e r t  gas atmosphere i s  by conduction and molecular d i f f u s i o n .  

A c o n s i s t e n t  s e t  of phys ica l  p r o p e r t i e s  d a t a  i s  assembled f o r  t h e  

var ious  candidate  metals and i n e r t  ambient gases  expected t o  be used i n  

t h e  nuc lea t ion  experiments.  

Trans ien t  p a r t i a l  p re s su re  p r o f i l e s  a r e  computed f o r  t h e  d i f f u s i n g  

r e f r a c t o r y  spec ie s  f o r  two p o s s i b l e  temperature  d i s t r i b u t i o n s .  The 

supe r sa tu ra t ion  r a t i o  values  from both candida te  temperature  p r o f i l e s  

are compared with prev ious ly  obtained experimental  d a t a  on a s i l v e r -  

hydrogen system. 

The model i s  used t o  s imula te  t h e  d i f f u s i o n  of magnesium vapor 

through argon and o t h e r  i n e r t  gas atmospheres over  ranges of i n i t i a l  and 

boundary cond i t ions .  These r e s u l t s  i d e n t i f y  d i f f e r e n t  combinations of 

des ign  and ope ra t ing  parameters which are l i k e l y  t o  produce supersa tu-  

r a t i o n  r a t i o  values  high enough t o  induce homogeneous nuc lea t ion  i n  t h e  

appara tus  being designed f o r  t h e  microgravi ty  nuc lea t ion  experiments.  

i 
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Chapter I 
INTRODUCTION 

0 

In the last twenty years, many scientists have become interested in 

the homogeneous nucleation of refractory materials such as metals and their 

oxides and carbon and its compounds. NASA is particularly interested in 

this subject because these materials are found throughout the interstellar 

medium, and XASA wants to determine their origin. Are they products of 

condensation of released vapors from stars? Or is there some other 

explanation? One possibility is that these particles were formed from very 

hot vapors in stellar outflows and as these vapors cooled, they condensed 

and grew into larger particles. 

A comprehensive program to study the nucleation of refractory 

materials is being undertaken to gain a better understanding of how particles 

nucleate and grow in the environment of outer space. Some experiments have 

already been performed in various terrestrial laboratories to determine the 

nucleation characteristics of individual substances, including the Goddard 

Space Flight Center studies of the vapor phase condensation of Si0 and Ag 

[1,2]. In order to minimize the possible effect of convection arising from the 

temperature gradients in the gravitational field, a series of experiments is 

now being designed to extend this work to a microgravity environment. 

In this chapter, the Classical Homogeneous Nucleation Theory and 

Rasmussen’s adjustment to the Classical Theory will be reviewed. These 

1 



theories will then be applied to the condensation data of Si0 and Ag. 

Finally, a preview of my thesis will be discussed. 

1.1. Classical Homogeneous Nucleation Theory 

0 

0 

The concept of homogeneous nucleation, first discussed by J. Willard 

Gibbs and subsequently developed into the Classical Homogeneous Nucleation 

Theory by Becker and Doring [3,4], is based on the premise that there is a 

barrier to the nucleation of a condensed phase from the vapor phase. This 

barrier is associated with the energy required to create a new surface and 

can be expressed in terms of the Gibbs free energy, AG, given by the 

following equation: 

AG = -nkTln(S) + A? 

where the first term is the energy released by the transfer of n moles from 

the vapor phase to a cluster of the condensed phase, and the second term 

accounts for the interfacial surface energy of the cluster. S is the 

supersaturation ratio, k is the Boltzmann constant, A is the surface area of 

the cluster and 7 is the interfacial tension of the cluster at the temperature 

T. 

The embryo, which is a cluster of atoms or molecules from the vapor 

phase, either grows or decays when another monomer collides with the 

cluster. If the addition of a monomer increases the surface energy more 

than it gives up due to condensation, then A G  increases and the embryo is 

destabilized thereby inhibiting the onset of nucleation. The embryo could 
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continue to grow, however, by the addition of monomers until the barrier to 

nucleation is overcome when the rate of increase in the surface tension effects 

equals the rate of decrease in the energy from condensation. At this point, 

the embryo has reached a critical size: A G  has reached a maximum, and 

the addition of one more monomer would cause a decrease in A G  and a 

nucleus has been formed. By a nucleus is meant a cluster of atoms or 

molecules for which the addition of an additional monomer first results in a 

decrease in A G .  

Adamson [5 ]  presents a system of equations from which the critical 

radius of the nucleus, the maximum Gibbs free energy and the nucleation 

rate can be calculated: First, a spherical geometry is assumed for the 

cluster and eqn.(l.l) becomes: 

A G  = - 4 kT - 7rr3 -In (S) + 4.rrrz7 3 v  

e 

a 

0 

where r is the radius of the cluster and V is the volume per molecule of the 

condensed phase. 

The critical radius, re, is the minimum radius, beyond which the 

addition of another monomer reduces AG, and is obtained by locating the 

maximum in the A G  vs. r curve (see Fig. 1-1). The critical radius can be 

found by differentiating eqn.(l.2) with respect to r and setting the derivative 

equal to zero. Then solving the resulting equation for r, gives the critical 

radius needed to maximize the Gibbs free energy: 

a 

- 27v 
rc - kTln (S) 
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Now, the maximum Gibbs free energy, AGmaZ, is obtained by substituting 

eqn.(1.3) into eqn.(l.2): 

167ry3V2 
3(kTln (S))2 

A G  = 
ma2 

e 

a 

0 

a 

0 

0 2 4 6 a 10 12 14 

RADIUS OF NUCLEUS 

Figure 1-1: Gibbs free energy vs. Radius of nucleus [SI 
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The nucleation rate, J, is related to AG,,, and the rate of 

formation of clusters of atoms or molecules. Since J is assumed to be the 

same for any size nucleus, it will be proportional to the gas kinetic collision 

frequency, 2. The consequence of this is that J equals the rate of formation 

of a cluster of two atoms or molecules modified by an activation energy 

term. This yields the following approximate relationship: 

A more complete expression of the nucleation rate according to the Becker- 

Doring development is given by the following equation: 

where Nl is the concentration of a single monomer and rn is the mass of a 

condensing monomer [6]. 

Two assumptions of the Classical Theory have come under attack in 

recent years. The first assumption being questioned is the capillarity 

approximation which assumes that the properties of a small cluster are the 

same as those of the condensed bulk phase. The second questionable 

assumption is the existence of a state of local thermodynamic equilibrium 

around the nucleation site. The questioning of these two assumptions have 

led to reanalyses of the Classical Theory. 
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1.2. Rasmussen’s Adjustment to the Classical Theory 

Don H. Rasmussen’s adjustment to the Classical Theory [7,8] is 

based partly on the work of Cahn and Hilliard [9] in which the idea of a 

physical spinodal had been developed. A physical spinodal is a 

thermodynamic limit to the metastability of a parent phase. It occurs at a 

critical supersaturation point and a critical cluster size such that, when this 

limit is reached, there is no longer any barrier to nucleation. The Classical 

Theory does not predict such a limit because the Classical Theory always 

assumes that there is a barrier to nucleation. To obtain a physical spinodal, 

Rasmussen assumed that a constant pressure exists throughout the 

supersaturated system. This assumption implies that the chemical potential is 

a continuous function of the cluster size which leads to the development of a 

physical spinodal. Constant pressure also implies that the surface tension of 

a nucleus is dependent on the size of the nucleus. This is similar to the 

earlier results by Cahn and Hilliard; and, therefore, Rasmussen was able to 

eliminate the capillarity approximation from the Classical Theory. 

One way to test the Rasmussen Theory is by using the linear 

relationship between the temperature, Tn, at which nucleation occurs, and 

the temperature, Te,, at which the system would be when at  equilibrium, 

which is predicted by the Rasmussen Theory and is given by the following 

equation: 

0 

e 

where Tc is the critical temperature for the system being studied. K is a 
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constant based on the temperature dependence of the surface tension, the 

difference in entropy between phases on the curve at the surface interface 

and the temperature dependence of interface thickness. K has a value of 

approximately 1.25 for organic vapor-liquid systems and inorganic liquid- 

liquid systems. However, there is no explanation as to why K should be the 

same for all these systems. K may be different for systems that involve 

refractory materials. 

1.3. Analysis of Previous Experiments 

Two experimental techniques have been used to study the nucleation 

of refractory materials. One technique incorporates the use of a shock tube 

and has been used primarily by Bauer et al. [10,11]. These experiments must 

be run at  high pressure and temperature, and the nucleation rate must be of 

the order of magnitude of 10l2 to 10l8 ~ m - ~ s e c - ~ .  Basically, a shock wave 

dissociates the refractory material in a matter of microseconds and nucleation 

occurs during the gas expansion. There are several disadvantages to the 

shock tube technique. First, studies are limited to refractory materials that 

have volatile precursors. For example, Bi is introduced as Bi(CH,),, Fe is 

introduced as Fe(CO), and Pb is introduced as Pb(CH,),. Second, the 

experiments occur on an extremely fast time scale (nucleation occurs in a few 

milliseconds). Third, the experiments are basically “one shot” in nature. That 

is, if nucleation does not occur in a matter of milliseconds, then nucleation 

will probably not occur at any later time, and the whole process must be 

repeated. Last, the temperature at  the point of nucleation cannot be 

determined with a high degree of accuracy. 

The second experimental technique involves a direct vaporization- 

7 
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condensation process. The refractory material is heated in a crucible. Its 

vapor is released into an inert gas atmosphere where the material nucleates 

and a cloud of condensed material can be visually observed. Hence, this 

technique is often referred to as the cloud-chamber technique. An advantage 

of this technique is that the temperature profile can be controlled and 

therefore nucleation can be controlled by adjusting the supersaturation ratio. 

Disadvantages are due to the convective instabilities which may arise from 

the difference in temperature between the very hot source and the much 

cooler ambient atmosphere, and the difficulties related to melting and 

vaporization of refractory materials. 

The Classical Theory has been applied to both techniques, but most 

of my study will involve the vaporization-condensation or cloud-chamber 

technique. Suth  et al. [1,2] attempted to use the Classical Theory and the 

Rasmussen Theory to analyze their results from the study of the 

condensation of Si0 and Ag. These results indicated that neither the 

Classical Theory nor the Rasmussen Theory fit their refractory materials 

condensation data. 

A primary assumption of the Classical Theory is the capillarity 

approximation which assumes that the properties of a small cluster are the 

same as for the condensed bulk phase. This approximation may have an 

effect on the expected nucleation rate due to the use of the bulk phase value 

of the surface tension. For very small clusters, there may be some effect of 

curvature on the surface tension which would mean that the surface tension 

of a small cluster is not the same as for the condensed bulk phase (5,121. 

However, there are not enough data available to determine how much of an 

effect curvature has on the surface tension of very small clusters. 

8 



If the capillarity approximation is valid, then m, V and -y in 

Eqn.(l.G) can then be eqn.(l.6) can be assigned their bulk phase values. 

rearranged so that 

J + ln(-) 
c2r” 

In ( N I 2 )  = 
~ 3 ( 1 ~  (s)y c, 70.5  

where 

0 

e 

2 

9 

J2v2 c, = - - 

16rV2 
3 k3 

c, = - 

If it is further assumed that the surface tension is constant over the 

range of temperatures covered by the given series of experiments, then, 

according to eqn.(l.8), a plot of T -31n(S)-2 vs. 1n(N12) should be linear. 

However, the results from a previous study of the condensation of Ag shows 

that a straight line is not obtained as would be expected from the Classical 

Theory [2]. The results from the study of the condensation of S i 0  does 

result in a straight line, but the calculated values for the critical radius and 

nucleus is unreasonable [ 11. 

Another assumption of the Classical Nucleation Theory is that the 

molecular or atomic components are assumed to be in a state of local 

thermodynamic equilibrium (LTE) . Computer modeling of the condensation 

of S i0  by Nuth et al. (131 seems to contradict this assumption for 
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circumstellar environments. There is believed to be a significant degree of 

vibrational disequilibrium existing in the regions of circumstellar nucleation. 

This state of disequilibrium may aid the onset of nucleation in two ways. 

First, a larger proportion of S i 0  monomers will occupy lower vibrational 

levels under non-LTE conditions. The rate of formation of Si0 dimers should 

then increase because the average SiO-Si0 complex will have less energy 

than is expected for LTE conditions. Second, the rate at which the S i 0  

dimers are dissociated due to collisions would decrease which means that 

there should be a large increase in the concentration of Si0 dimers under 

non-LTE conditions. An increase in the concentration of S i0  dimers should 

lead to an increased rate at  which stable nuclei can form. Therefore, 

circumstellar nucleation would be expected to occur more rapidly under non- 

LTE conditions than under LTE conditions. 

Nuth et al. [2] attempted to apply the Rasmussen Theory to their 

results from the study of the condensation of Ag. The temperature at which 

nucleation occurred appeared to depend on the total pressure of the system: 

as the total pressure increased, the nucleation of Ag became easier. The 

Rasmussen Theory did not fit the Ag nucleation data if the constant K from 

eqn.(l.7) was assigned the value of 1.25. Although Rasmussen [7] does refer 

to K as a “universal” constant, he does suggest that K may not always be 

universal, and that it could depend on the system studied. Once again, not 

enough experimental data are available to prove or disprove Rasmussen’s 

adjustment to the Classical Theory. 

10 
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1.4. Scope of this Study 

The mechanisms by which refractory materials nucleate have yet to 

be determined. Neither the Classical Theory nor the Rasmussen Theory 

appear to agree with the experimental data collected so far; therefore, much 

more data need to be collected before these mechanisms can be fully 

understood. As was noted earlier, silicon oxide and silver have already been 

studied. However, several problems occurred during these experiments which 

could have affected the results significantly. First, the high temperature 

difference between the crucible and the ambient gas atmosphere in the 

chamber may have produced thermal convection which would have an effect 

on the uniformity of condensation during the experiment. Second, soon after 

the clusters form and begin to grow, they begin to settle out of the 

atmosphere due to their higher density. Therefore, the study of the growth 

and coagulation of these particles is difficult in earth’s gravitational field. 

NASA is in the process of designing a series of experiments to 

overcome these and other problems associated with nucleation studies of 

refractory vapors in terrestrial cloud chamber experiments. These 

experiments will study the homogeneous nucleation in a microgravity 

environment of a number of species, starting with magnesium, tin and lead. 

The first system to be studied will be magnesium vapor diffusing through 

and condensing in an argon atmosphere. The experimental apparatus will be 

tested on the KC-135 research aircraft which can fly parabolic trajectories so 

that microgravity conditions can be obtained for approximately twenty-five 

second periods. 

The objective of my thesis is to develop a mathematical model for 

11 
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the development of the temperature profile and the concentration profile of 

diffusing vapor species. The mathematical model will be used to identify 

conditions under which nucleation is likely to occur. The results from the 

mathematical model will also be helpful for selecting the test chamber design. 

The mathematical model will be developed for two concentric 

spheres. The inner small spherical surface will represent the hot source, and 

the outer sphere will be the sink. Convection and radiation will be 

neglected, and only transfer by conduction and molecular diffusion will be 

considered. First, the development of a steady temperature profile is 

determined for this spherical geometry. Two temperature distributions will be 

studied: the steady state temperature profile assuming a constant thermal 

diffusivity, and a steady state temperature profile using the temperature 

dependent thermal diffusivity. An important result is the time required to 

achieve a steady temperature distribution. 

Once a steady temperature profile is established, the temperature 

dependence of the molecular diffusion coefficient of the vapor can be 

determined, and the developing partial pressure profile can be calculated. The 

local equilibrium vapor pressure is calculated from .the temperature profile 

using an Antoine-type equation. Since the vapor pressure decreases 

exponentially with decreasing temperature, relatively high supersaturation 

ratios can be expected away from the hot source. Finally, the supersaturation 

ratio will be calculated for different boundary conditions to determine its 

sensitivity to changes of each parameter in the equations developed for the 

Q 

hollow sphere model. 
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THEORETICAL MODEL 

The purpose of developing a mathematical model to calculate the 

supersaturation ratio is not to predict where nucleation will occur, but rather 

to calculate a range of values in which the supersaturation ratio is large 

enough for the onset of nucleation to occur at  rates where condensation can 

be visually observed. Based on previous studies, this would require nucleation 

rates on the order of lo9 - lo1' particles/cm3/s [1,2]. 

A mathematical model will be developed for a hollow sphere 

geometry to calculate a range of supersaturation ratio values. In order to do 

this, a temperature distribution needs to be established so that the partial 

pressure and vapor pressure of a species at  a particular point can be 

calculated. Two temperature distributions will be developed and then 

examined in Chapter 4. One temperature distribution uses a constant thermal 

diffusivity, while the other one accounts for the temperature dependency of 

the thermal diffusivity. 

2.1. Development of the Mathematical Model 

The hollow sphere model (see Fig. 2-1) was chosen because it is a 

relatively simple geometry for which solutions of the governing equations with 

various boundary conditions are readily available. Even though the 

experimental apparatus is to be cylindrical in shape, the profiles developed 

13 
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by both the model and the experiments can be expected to be similar close 

to the hot source. However, the model is not expected to  be very good closer 

to the outer sphere. Since a previous study reported that nucleation occurred 

relatively close to the hot source, the hollow sphere model should simulate 

the actual experiment. The developed equations are used to determine 

Const. temp. sink at 2 2  

/ I /  /./ // /'.{/'/ / /  / / I / / / /  
\ 
\ 
\ 
\ 

Ho$ source at T1 

14 

Figure 2-1: Hollow Sphere Model 
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whether or not supersaturation ratios large enough to induce homogeneous 

nucleation can be obtained within the time available for experimental runs 

aboard the KC-135 aircraft. 

The supersaturation ratio, S, is defined as the ratio of the partial 

pressure of the material, Pp, to the vapor pressure of the material, Po, at a 

specific point: 

PP s = -  
Pu 

The vapor pressure is usually calculated using the Antoine equation: 

BU 
log (P.) = Au - T 

where T has units of degrees Kelvin, Pu has units of torr and A and B are 

constants for a given substance. 

2.1.1. Temperature Profile: Constant Thermal Diffusivity 

A temperature distribution needs to be developed so that the vapor 

pressure can be calculated at a specific point. The general equation used to 

calculate the temperature profile is: 

a 

15 



where cy is the thermal diffusivity, with units of cm2/s, and is assumed to be 

constant. 

The boundary conditions for the hollow sphere model are: 

for t < 0 

and R l s r s  R2 T = T o ;  

0 for t 2 0 

and r = R1 T = T l  
r = R2 T = E ?  

The general solution of eqn.(2.3) is given by Crank [14, p.991. 

72, this solution becomes: 

Letting To = 

RlTl  (R222-RlTl)(r-R1) + 
+ r(R2-R1) 

T=- 
r 

1 (2.4) 
R222cos (nr) - RlTl nr(r-Rl) -an2r2t  

R2-Rl exp(( R2-R1)2 
L g  n sin 
r r  

n=l  

If we subtract 72 from both sides of eqn.(2.4) so that the system is 

in terms of the excess temperature, Tcz = T - E?, then eqn.(2.4) becomes: 

X 
R1 (R2-r) (Tl - 22) 2 R1 (Tl- E?) - 

Tez = r(R2-R1) rn  

At steady state, eqn.(2.5) becomes 

16 
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2.1.2. Temperature Profile: Temperature Dependent Thermal 

Diffusivi t y 

The steady state temperature profile developed in Section 2.1.1 

assumed thermal diffusivity to be constant. To incorporate the temperature 

effect on the thermal diffusivity cy, Crank [14, p.1601 suggested the following 

procedure. 

At steady state the basic equation used to calculate the temperature 

profile is given by: 

d d T  
d r  dr  - - c y ( q -  = 0 

With boundary conditions for th- hollow sphere model the same as in 

Section 2.1.1, the resulting solution of eqn.(2.7) is of the form: 

- - z l+F(  n) - T- F( T )  R2 ( R1- r ) 
r (R1- R2) Zl+F( n) - 72- F( 22) 

where: 

17 
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The function, j(T), can be obtained from the relationship: 

Q = Q0(1+f(T)) 

and is therefore: 

(Y 

f(T) = ; - 
0 

(2.10) 

(2.11) 

The thermal diffusivity is assumed to be that of the ambient inert 

gas since the diffusing vapor concentrations are too low to affect the thermal 

diffusivity significantly. If the ambient gas is argon, then an empirical 

relationship for the thermal diffusivity can be determined (see Appendix B): 

~ 1 . 7 3  
oAr = 8.32~10~~- P 

If we let Q = cyo at T = 22 and P = 760 torr, then 

8.32~ 221.73 - 
Q o  - 760 

(2.12) 

(2.13) 
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Substituting eqn.(2.12) and eqn.(2.13) into eqn(2.11), we get 

- 1  
760 T 1.73 

f A r ( q  = 0-1.73 
(2.14) 

Eqn.(2.14) can be placed in terms of T,, = T - 22, so that eqn.(2.9) can be 

written as 

Tcz 760 Tcz’ 
F( Tez) = I ( ~ ( m  + 1) 1.73 - l)dTcz ’ 

Therefore, 

76022 Tez 
F( To, = -( 2.73P (- T2 + q 2 . 7 3  - 1) - Tcz 

(2.15) 

(2.16) 

Eqn.(2.8) can also be placed in terms of excess temperature so that 

(2.17) 

e 

where 
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Te, = T - l 2  
TezJ = n-22 
Tez,2 = O 

If we plug Ter,l into eqn(2.16), then 

Likewise, if we plug TeZt2 into eqp.(2.16), then 

(2.18) 

(2.19) 

Substitution of eqn.(2.16), eqn.(2.18) and eqn(2.19) into eqn.(2.17) simplifies 

to: 

R2(Rl -r )  Y - z  
r ( R l - R 2 )  Y-1 

- -  - 

where 

Tl 
22 

y = (-92.73 (2.21) 

and 

20 
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T 

0 

0 

Finally, eqn.(2.20) car, be solved for the temperature generating a 

temperature profile thai incorporares the effect of the steady staie 

temperature on the thermal diffusivity. 

where 

(2.2") 

il nd 

(2.32) 

(2.74) 

Sou': eqn.(2.23) c m  be used 13 cdCidBte a iiew tcrnperzture pro5le. 

This profile will be compared with ti-x temperature profi!e obtained from 

~ q n . ( 2 . 6 ) ,  and the effect that each equation has on the partizl pressure 

I)rofile znd t he  supersaturation ratio wi!! Le cornpared in Chapter 4. 
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2.1.3. Partial Pressure Profile a 
The general equation used to calculate the concentration profile in 

spherical geometry is 

aC a2c 2dC 
at at2 r a r  
- -  - D(-+-) 

e 

(2.26) 

where D is the molecular diffusion coefficient with units of cm2/s and is 

assumed to be a function of temperature and pressure only. 

The boundary conditions for the hollow sphere model are 

e 

e 

a 

for t < 0 

and R 1 5 r i R 2  C = Co = C2;  

for t 2 0 

and r = R1 
r = R2 

c = c 1  
c = c 2  

If the same procedure is used for the concentration profile as was 

used for the temperature profile developed in Section 2.1.1, then the solution 

to eqn.(2.26) is: 

- R l C l  (R2C2-RlCl)(r-R1) C = -  
r + r(R2-R1) 

1 2 O0 R l ( C l - C 2 )  na(r-R1) -Dn2a2t 
R2-Rl R2- R1) 

-E T i n  
r a  n= 1 

(2.27) 

With C in the dimensionless form: 
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c-  c2 
c1- c2 c* = 

e 

0 

0 

e 

eqn.(2.27) becomes: 

1 
Rl(R2-r) 2R1 O0 1 nlr(r-Rl) -Dn21r2t c* = - -E ;;sin 
r(R2-R1) rr R2- R1 exp(( R2 - R i  ) 2  n=l  

(2.28) 

A t  moderate temperatures and pressures, the ideal gas law can be 

used to put eqn.(2.28) in terms of partial pressure. 

* -  - - -E -sin 1 (2.29) Rl(R2-r) 2R1 O0 1 nn(r-Rl)  -Dn2n2t 
(R2 - R i  12  pp r(R2-R1) 7~ n R2-Rl 

n= 1 

The only part of eqn.(2.29) which is dependent on the temperature and 

pressure of the system is the diffusion coefficient, D. The general relation 

used to calculate the diffusion coefficient for a binary gaseous mixture of A 

and B is 

(2.30) 

Calculation of DA-B is shown in Appendix C (151. 

Now, eqn.(2.6) or eqn.(2.23) and eqn.(2.29) are used to  simulate the 
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movement of the diffusing material through an inert atmosphere. Then, 

combining these equations with eqn.(2.2) and eqn.(2.1), the range of 

supersaturation ratios at different time intervals can be calculated throughout 

the experimental chamber. 

2.2. Parameters Affecting the Mathematical Model 

Many parameters in eqn.(2.2), eqn.(2.6), eqn.(2.23) and e q ~ ( 2 . 2 9 )  

have an effect on the supersaturation ratio: the temperature profile, total 

pressure, radii of the inner and outer spheres, and the inert gas atmosphere. 

Any one of these parameters may have a significant effect on the 

supersaturation ratio or .no effect at all. 

The temperature profile can be changed directly by raising or 

lowering the temperature at the inside boundary (TI) or at the outside 

boundary ( 2 2 ) .  The profile can also be changed indirectly by increasing or 

decreasing the size of the inner sphere ( R l )  or by increasing or decreasing 

the distance to the outside boundary (R2). Since both the partial pressure 

and the vapor pressure are dependent on the temperature at  a particular 

location, it is difficult to determine the overall effect. which TI, 2’2, R1 and 

R2 have on the supersaturation ratio. Whichever pressure, Pp or Pv, is 

affected more by a change in temperature will determine whether the 

supersaturation ratio will increase or decrease at  a specific location. 

Total pressure apparently has no effect on the temperature profile, 

but does affect the rate of molecular diffusion through the ambient gas. 

Therefore, with a lower total pressure at  a given temperature, the vapor 

pressure will remain the same, but the rate at  which the vapor diffuses will 

increase which will in turn increase the partial pressure and consequently 
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raise the supersaturation ratio at that specific location. Likewise, the 

supersaturation ratio should decrease when the total pressure is increased and 

the temperature remains constant. 

A similar effect should be seen if the inert ambient gas is changed. 

The higher the molecular weight of the inert gas, the slower the diffusion 

through the ambient gas. The partial pressure will then be decreased and the 

supersaturation ratio will be lowered. The opposite will occur if a lower 

molecular weight inert gas is used. 

The above simple mathematical model can be used to predict the 

effect which each parameter has on the supersaturation ratio so that the 

experiments can be run successfully. A successful experiment means that 

nucleation occurs within the allotted time interval and far enough away from 

the source of the vapor for accurate experimental determination of the point 

of nucleation. Granted, the model cannot predict the exact location of 

nucleation without having the critical supersaturation ratio specified, but it 

does permit the identification of the conditions likely to produce ranges of 

supersaturation ratios where it is believed that nucleation should occur. It 

can also be used to evaluate suggestions as to what to change to force 

nucleation if it did not occur initially. Should T1 be raised or lowered? 

What about E?? Will changing the pressure have an effect on nucleation? 

From this study, conditions under which the experiments should be run will 

be determined. 
e 

a 
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It must be noted that once nucleation begins, these equations may 

no longer be useful because other factors become involved in the process. 

The most significant of these is probably the rate of growth of the nucleus. 

Once the energy barrier that prevents spontaneous nucleation is overcome, 

the growth rate of the nucleus becomes very fast. As the nucleus grows in 

size, the partial pressure in the neighborhood of the solid particle will 

decrease accordingly. Neither the diffusion equation nor the temperature 

equation can be used to determine the particle growth rate. 

Very little vapor is likely to diffuse past the nucleus and travel 

towards the outside barrier due to the greater possibility that the nucleus 

and the vapor molecules will collide and stick together. The diffusion 

equation is used only to predict the rate at  which vapor molecules move 

through the inert atmosphere and does not take into account the interaction 

between the nucleus and the vapor molecules; therefore, once nucleation 

occurs, the diffusion equation can no longer be expected to predict the 

movement of vapor molecules through the inert atmosphere with much 

confidence. 

The temperature profile in the region where nucleation begins will be 

affected by the energy released when condensation occurs. This energy, the 

heat of condensation, could be used to estimate the change in temperature 

near the site of nucleation. If the temperature is increased significantly, then 

both the vapor pressure and the partial pressure will be affected by the 

release of energy during condensation. 

Also, the effects of thermal radiation on the temperature profile have 
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been omitted from this study; therefore, when the temperature is measured 

during the experiment, a certain amount of error is expected in the 

equations. 

The geometry of the mathematical model is spherical, whereas the 

experimental apparatus is expected to be cylindrical in shape. Although the 

development of the profiles is expected to be similar for both geometries near 

the inner source, they could be vastly different near the outer boundary. As 

long as nucleation occurs relatively close to the inner source, the 

mathematical model should predict the range of conditions needed for 

nucleation to occur. 
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EXPERIMENTAL 

Before the experiments can be performed in zero gravity for an 

extended length of time, preliminary experiments must be performed to test 

the experimental apparatus in a microgravity environment. These experiments 

will be run on IL’ASA’s KC-135 research aircraft which can maintain zero 

gravity for approximately twenty-five seconds by flying a parabolic route. 

The aircraft will fly a number of parabolic trajectories during any one test 

flight so that a series of experiments can be completed. The initial trial runs 

will use a very simple system that will consist of a cylindrical container with 

a heated crucible at one end. A metal will be melted inside the crucible 

producing equilibrium vapor pressure over the molten surface. The vapors are 

then released to diffuse into the inert atmosphere in the cylindrical chamber 

at  lower temperatures where condensation will take place. The experiments 

will be taped using a video cassette in order to determine where nucleation 

occurs. Since the experiments will only have available a time span of under 

twenty-five seconds, the study of the growth of the clusters will necessarily 

be limited. This aspect of study will be done at  a later time when longer 

periods of microgravity become available. The experiments performed on the 

KC-135 research aircraft will be used primarily to develop an apparatus and 

measurement techniques and to determine the conditions under which 

nucleation occurs. 
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3.1. Materials to be Investigated 

A variety of materials will be studied in order to gain a better 

understanding behind the nucleation phenomenon of refractory materials. A 

series of relatively simple metals will be investigated first before more 

complex materials will be examined. Magnesium will be the first metal to be 

studied in the new experimental apparatus. Nucleation of Mg vapor is 

expected to occur at very high supersaturation values because the Mg dimer 

is a van der Waals molecule. Because of the high degree of supersaturation 

needed to cause nucleation, the cloud of Mg clusters should have a sharp 

front and therefore should be relatively easy to locate. 

Later, tin and lead may be studied in the same chamber. Tin 

vaporizes as a dimer and lead as a tetramer; therefore, lower degrees of 

supersaturation are expected for condensation of these metals than for 

magnesium. Also, the results from the experiments with tin and lead can be 

compared with the shock tube analysis by Bauer et al. [10,11]. 

3.2. Description of Experimental Apparatus 

The experimental apparatus as now visualized will be cylindrical in 

shape and divided into two sections (see Fig. 3-1). The well-insulated top 

section contains the crucible where the metal is vaporized. The crucible is 

placed in the top section in an attempt to reduce convective instabilities 

between zero gravity periods arising from the temperature and density 

gradients in the cloud chamber. In this section, there is an upper heater and 

a lower heater (see Fig. 3-2). The upper heater surrounds the crucible and is 

used to control the vapor pressure of the metal inside and around the 

crucible. 
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Figure 3-1: Proposed Experimental Apparatus 
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The lower heater is approximately 4cm in radius and is used to control the 

temperature profile in the cloud chamber. A temperature at the lower 

heater which is higher than in the crucible should push the point of 

nucleation farther from the opening of the crucible and thus make it easier 

to locate. The rest of the top section is filled with graphite wool which 

serves as an insulator. 

The bottom section of the apparatus will be referred to as the cloud 

chamber. This chamber is initially filled with an inert gas and maintained 

at  a specific pressure. A steady temperature profile will be established 

dependent on the temperature of the hot crucible as the source and the 

temperature of the ambient atmosphere surrounding the chamber as the heat 

sink. When the experiment is ready to run, the metal vapor is released 

from the crucible into the cloud chamber by opening the cover on the 

crucible compartment. This is the section where nucleation occurs. The 

outside wall of the cloud chamber is made of a thick clear plastic so that 

the entire run can be video taped. 

3.3. Experimental Procedure 

The temperature of the crucible, the temperature of the ambient 

atmosphere and the total pressure in the cloud chamber will be fixed before 

the KC-135 research aircraft begins the ascent stage of the parabolic route. 

Thermocouples placed at strategic positions will monitor the temperature 

profile and determine when a steady temperature distribution has been 

achieved. When the KC-135 nears the peak of the parabola, the video 
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camera and the lights will be turned on. At this point, there will be a time 

delay, which will be varied throughout the flight, to allow for any convection 

currents to die out. The crucible compartment cover will then be removed 

and the metal vapor will diffuse into the cloud chamber. Nucleation will 

occur at  a distance from the crucible at  which the partial pressure of the 

diffusing vapor first exceeds the critical multiple of the vapor pressure 

(supersaturation ratio) of the same metal determined by the temperature at 

the point of nucleation. 

The video tape of each run will be analyzed to determine the 

distance at  which nucleation is first observed. Then the partial pressure of 

the metal vapor will be calculated using the model developed in Chapter 2. 

Hence, data for the partial pressure of the metal vapor needed to cause 

nucleation as a function of temperature can be generated. Finally, the 

supersaturation ratio will be calculated using the hollow sphere model and 

compared with past experimental results. 

e 
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Chapter 4 
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RESULTS and DISCUSSION 

The hollow sphere model developed in Chapter 2 will be used to 

generate data for the supersaturation ratio. The effect of each parameter on 

the temperature profile, the partial pressure profile and the supersaturation 

ratio will be studied. Since the actual temperature profile has not been 

determined, the effects on the supersaturation ratio of both temperature 

profiles developed in Chapter 2 will be examined. Also, a third possible 

temperature profile will be introduced and the effect that this profile will 

have on the supersaturation ratio will be predicted. Finally, the data 

generated from the hollow sphere model will be compared with existing 

experimental data. 

A computer program (see Appendix D) was written to generate local 

supersaturation data using the following equations developed in Chapter 2:  

~ 1 . 5  
(2.30) 

O0 1 nn(r-R1) -Dn2n2t 
2 R ' ~  s i n  exp(( R2- R112 n R2-R1 "* = t (R2-R1)  rn  l (2 .29)  -- R l ( R 2 - t )  

n=l 
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PP s = -  
P v  

The constants for eqn.(2.2) are listed in Appendix A. The expression for the 

diffusion coefficient is calculated in Appendix C. 

Initially, the program was run at the following baseline conditions: 

P = 760 t o r r  
n = 1000 K 
7 2  = 293 K 
R1 = 1.0 cm 
R2 = 25.0 cm 

Of course, once the experimental apparatus is built, R1 and R2 cannot be 

changed. We will, however, discuss the effects that both R1 and R2 have on 

the supersaturation ratio because these sizes had to be considered before the 

experiment a1 apparatus was built . 

It is believed that magnesium will need to reach a supersaturation 

ratio between lo8 and lo1' in order for nucleation to occur. Therefore, we 

will determine under what combination of conditions such a supersaturation 

ratio range can be obtained and which parameters have the greatest effect on 

the likely nucleation. Each parameter will be considered separately; when one 

parameter is changed all other parameters will have the same value as for 

4 

the baseline conditions. 
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4.1. Steady State Temperature Profile 

This section is used to determine the effects of each parameter on 

the partial pressure profile calculated by eqn.(2.29) and the supersaturation 

ratio calculated by eqn.(2.1) using the constant a steady state temperature 

profile calculated by eqn.(2.6). The data generated by the computer program 

as a function of distance from the crucible were used to graph the steady 

state temperature profile, the partial pressure profile and the supersaturation 

ratio for varying times. These graphs are shown as Figure 4-1, Figure 4-2 

and Figure 4-3 respectively. Since the total pressure and the inert gas do 

not affect the temperature profile, the effects of these parameters will be 

discussed in a later section. The parameters that do affect the temperature 

profile are T1, 22,  R1 and R2. The figures in the following sections were 

arbitrarily chosen for t = 15 s. 

4.1.1. Effect of the Crucible Temperature 

As the value of T1 is increased, the temperature profile is greater 

close to the source and eventually approaches the same value as the distance 

from the source increases. The partial pressure increases as Z l  increases 

because the partial pressure closest to the source is determined by the vapor 

pressure of the system at Z l .  Therefore, as T1 increases, the partial 

pressure is higher close to the source due to the dependence of the diffusion 

coefficient on the temperature (see eqn. (2.30)). Since the partial pressure 

profile is greater as T1 increases, there is a higher concentration gradient 

which causes the vapor molecules to diffuse at a faster rate than molecules 

at  a lower temperature. 
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At early stages of profile development, the temperature has a greater 

effect on the vapor pressure than on the partial pressure; therefore, closer to 

the source the vapor pressure at 950 K is much less than the vapor pressure 

at 1200 K and the supersaturation ratio is lower closer to the source for 

higher 2'1. However, as the molecules diffuse away from the source, the 

temperature profiles are similar and the local vapor pressure with 950 K 

source approaches the vapor pressure with 1200 K source, but the partial 

pressure at 950 K is much less than the partial pressure at 1200 K; 

therefore, the supersaturation ratio is greater at distances farther from the 

source as T1 increases. This is shown by an increase in the maximum value 

and a shift of the maximum value away from the source in the S vs. r plot 

(see Figure 4-4). 

4.1.2. Effect of the Ambient Temperature 

As 2 2  is increased, the temperature profile becomes less steep closer 

to the source, and the difference between the curves increases as the 

difference in 22  increases. The temperature of the system is always greater 

for a greater Z?. Likewise, both the partial pressure .and the vapor pressure 

are increased throughout the system when T2 is increased. Since the vapor 

pressure increases exponentially with increasing temperature, the more the 

temperature is increased the lower the supersaturation ratio will be. 

Therefore, the supersaturation ratio decreases when 2 2  is increased. The 

distance at which the maximum value is reached is changed very slightly, 

but the actual maximum value is greatly reduced (see Figure 4-5). 
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4.1.3. Effect of the Crucible Radius 

As R1 is increased, the temperature profile becomes less steep closer 

to the source and the inert gas temperature is raised throughout the system. 

Likewise, the vapor molecules diffuse at a faster rate and the partial pressure 

is again increased. Since the temperature increases with increasing R1, the 

vapor pressure increases and the supersaturation ratio is decreased. Also, the 

system reaches a maximum value at a slower rate and the maximum value 

is lowered (see Figure 4-6). 

4.1.4. Effect of the Outside Boundary 

There is very little change in the temperature profile as R2 is 

increased. Likewise, the partial pressure is increased by a very small 

amount. Since the partial pressure remains essentially the same as R2 is 

increased, the primary change in the supersaturation ratio is due to the 

increase in temperature. The vapor pressure is increased due to the 

temperature increase; therefore, the supersaturation ratio is decreased as R2 

is increased. The maximum value is lowered, but the distance from the 

crucible remains essentially the same (see Figure 4-7): 

4.2. Comparison of the Temperature Profiles 

The steady state temperature profile calculated by eqn.(2.6) does not 

take into account the effect of temperature on the thermal diffusivity. 

Intuitively, one would expect that the thermal diffusivity should have an 

effect on the temperature profile as shown by eqn.(2.23). Since it will not be 

known which temperature profile is more accurate until the experiments are 

run, both temperature profiles are considered. 
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Figure 4-8 shows that the temperature would be increased when the 

temperature dependent thermal diffusivity is considered. This means that the 

partial pressure and the vapor pressure are both increased throughout the 

chamber. Since the vapor pressure has a greater temperature dependence 

than the partial pressure, the supersaturation ratio is decreased when the 

temperature dependent thermal diffusivity is used (see Figure 4-9). Likewise, 

each parameter affects the supersaturation ratio in the same manner as was 

discussed when using the constant Q steady state temperature profile except 

the supersaturation ratios are lower for the new temperature profile (compare 

Figure 4-9 with Figure 4-3). 

Tables 4-1 and 4-2 show the time and distance at which the 

supersaturation ratio first equals IO8, IO9, IO1' and 10l1 for each parameter 

change and for both temperature profiles. It is much more likely for the 

system to reach supersaturation ratios of lo1' or lo1' if the constant Q 

steady state temperature profile were the more correct one, than when the 

temperature profile incorporated the temperature dependent thermal 

diffusivity. This is due to the faster rate at which the steady state 

temperature declines, which causes a lower vapor pressure, at a faster rate 

than the temperature profile adjusted by the effect of the thermal diffusivity. 

a 
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Unless otherwise stated, the parameters have the baseline values: 

P = 760 torr 
T1 = 1000 K 
T2 = 293 K 

R1 = 1.0 cm 
R2 = 25.0 cm 

The inert gas is Argon. 
The temperature profile is calculated 
assuming constant thermal diffusivity. 

The distance from the source, r, is in cm. 
The time, t, is in seconds. 

Parameter s = lo8 s = io9 s = 1010 s = 101' 
values t r t r t r t r 

baseline 4.0 4.0 7.0 4.6 12.0 5.6 20.0 7.2 

R1=0.5 2.0 1.8 3.0 2.4 4.0 3.4 8.0 4 .O 

R1=2.0 10.0 6.8 16.0 7.8 25.0 9.2 

R2=20.0 4.0 3.4 6.0 4.4 10.0 5.4 17.0 6.4 

R2=30.0 5.0 3.6 8.0 4.6 13.0 6.0 23.0 7.4 

P=250 2.0 3.2 3 .O 4.0 4.0 5.6 7.0 6.8 

---- --- 

---- --- P=1200 7.0 3.6 11.0 4.6 18.0 6.0 

neon 3.0 3.4 4 .O 4.4 6.0 6.0 11.0 6.8 

krypton 6.0 3.6 9.0 5.0 16.0 5.8 27.0 7.4 

T1=950 5.0 3.4 8.0 4.4 13.0 5.6 22.0 7.4 

T1=1200 4.0 3.8 6.0 4.8 10.0 5.6 16.0 6.8 

T2=200 2.0 2.2 2.0 2.8 3 .O 3.0 4.0 3.6 

NOTE: "---n means that the value of S cannot be reached within 30 s. 
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Unless otherwise stated, the parameters have the baseline values: 

P = 760 torr 
T1 = 1000 K 
T2 = 293 K 

R1 = 1.0 cm 
R2 = 25.0 cm 

The inert gas is Argon. 
The temperature profile is calculated assuming 

temperature dependent thermal diffusivity. 
The distance from the source, r, is in cm. 

The time, t ,  is in seconds. 

Parameter s = IO* s = io9 s = 1010 s = 101' 
values t r t r t r t r 

NOTE: n---n means that the value of S cannot be reached within 30 s. 
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4.3. Effect of Total Pressure 

As was stated earlier, the total pressure of the system is expected to 

have no effect on the steady temperature profile, but it does affect the 

partial pressure and hence the supersaturation ratio. Since the temperature is 

not changed, the vapor pressure is not affected; therefore, the only change in 

the supersaturation ratio is due to a change in partial pressure. 

The diffusion rate, and therefore the partial pressure, decreases as 

the total pressure of the system is increased due to the inverse relationship 

between the diffusion coefficient and the total pressure. Since the vapor 

pressure remains the same for a given temperature, the supersaturation ratio 

will decrease as the total pressure is increased because the partial pressure is 

decreased. Also, the maximum value is reached closer to the source, but the 

maximum value decreases as the total pressure increases (see Figure 4-10). 

4.4. Effect of Ambient Gas 

The ambient inert gas in the test chamber affects the supersaturation 

ratio in much the same way as the total pressure. The higher the molecular 

weight of the ambient gas, the slower the rate at which the vapor molecules 

diffuse away from the crucible and the lower the partial pressure. Likewise, 

the supersaturation ratio will decrease due to the decrease in the partial 

pressure and no change in the vapor pressure. Once again, the maximum 

value is reached closer to the crucible, but the maximum value decreases as 

the molecular weight of the ambient gas increases (see Figure 4-11). 
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e 4.5. Amount of Heat Required 

In order to keep the temperature profile constant once steady state 

has been reached, the designer of the experimental apparatus needs to know 

how much heat needs to be added to the system at R1 and removed from 

the system at R2 so that Tl and 22 can be maintained at constant values. 

We know that 

- 
Qin - Qa,, + Qout 

0 

e 

0 

e 

where q;, is the heat added to the system at R1, q,,, is the heat 

accumulated in the experimental apparatus and qout is the heat removed 

from the system at R2. 

Crank [ 1 4 ,  p.1001 solves the problem of the hollow sphere for qaCc 

and qout. The heat that accumulates between the two spheres is given by 

2 R1 
Q,,, = 5 ~ R l R 2 ( R 2  - R l ) A H ( - +  R2 0.5 + 

where AH is the change in enthalpy from Tl to 22 with units of cal/cms 

and is calculated by 

n 
AH = pC,,dT (4.3) 
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The heat that needs to be removed from the system at R2 is given 

by 

0 

0 

1) 
- Q ( n T )  2t 

ezP((R2 - R1)2 (4.4) 

Then eqn.(4.2) and eqn.(4.4) can be substituted into eqn.(4.1) so that the 

total amount of heat needed to be added to the system can be calculated. 

Figure 4-12 shows a plot of both heat rates vs. time for the Mg-Ar 

system. As can be seen, the input heat rate reaches a constant value of 

0.290cal/sec after a period of approximately 5.5 minutes, and the heat rate 

out levels off at  the same constant value of 0.290cal/sec after a period of 

approximately 10 minutes. 

Another purpose of calculating the amount of heat added and 

removed is to give the designer a guideline when considering the type of 

material to be used for the outside wall. It is beyond the scope of this 

study to determine how thick the outside wall should be and what type of 

material should be used in order to maintain the derived surface temperature 

at  T2. 
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4.6. Temperature Profile: Flat Source 

Consider the case in which the region , z  > 0 is continuously heated 

by a constant flux over a portion of its surface. More specifically, the heat 

supply is added at  the rate q per unit time per unit area over a circular 

disk x2 + y2 5 R1 when time t 2 0 and z = 0. Carslaw and Jaeger [16, 

p.2641 give a solution to this problem in terms of the temperature excess 

(Tez = T - T2) along the direction (O,O,z) through and normal to the center 

of the circular disk heat source, and the equation is given by: 

where k is the thermal conductivity, a is the thermal 

time. 

(4.5) 

diffusivity and t is the 

If the baseline conditions stated at the beginning of this chapter are 

used, then eqn.(4.5) can be solved for q when z = 0. The heat supply then 

remains constant for the entire temperature range. Also, since the 

temperature profile calculated by eqn.(4.5) is time dependent, a method is 

needed to determine the amount of time it will take before the baseline 

condition at  the outer boundary is violated ( 2 2  > 293 K ) .  For a first 

estimate, the amount of time it takes for the heat rate qin calculated in the 

previous section is used; however, after 5.5 minutes, the temperature at the 

outside boundary (R2 = 24 cm) is greater than 293 K; therefore, a shorter 

time period is required. 

If the system is allowed to run for a period greater than 113 
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seconds, then the boundary condition at R2 will be violated. Therefore, q is 

calculated for t = 113 s, and this value is then used to calculate the 

temperature profile. 

Figure 4.13 shows the temperature profile for this system for several 

values of R1. A different value of q must be used for each temperature 

profile. Notice, that as R1 is increased, the temperature profile shifts to 

higher values and becomes less steep; therefore, the supersaturation ratio 

should decrease and the maximum value should move farther from the source 

as R1 is increased. 

4.7. Comparison with Experimental Results 

The only experimental data available at this time for comparison 

with these model predictions are those for the silver vapor-hydrogen gas 

system as reported by Donnelly [17]. Data generated from an adjusted hollow 

sphere model are compared with the experimental data obtained by Donnelly 

(see Table 4-3). This comparison is subject to the following assumptions. T1 

is assigned the actual crucible temperature. R1 is assigned the actual crucible 

radius. 2 2  is adjusted to give the same approximate -temperature, T,, at the 

point of nucleation, rn. R2 is chosen to correspond to the distance from the 

crucible to the thermocouple near the furnace. Finally, since no time 

interval is given with the experimental data, the data obtained from the 

hollow sphere model is calculated at steady state temperature and steady 

state partial pressure. The supersaturation ratios are then compared. 
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Figure 4-13: Temperature Profile: Flat Source 

59 



e 

a 

0 

0 

0 

0 

Table 4-3: Experimental vs. Model Comparison 

The data are grouped in threes: 
Experimental data by Donnelly [17] 
Adjusted model prediction - constant cr 
Adjusted model prediction - variable Q 

Pressure = 250 torr 

0.95 
0.95 
0.95 

0.95 
0.95 
0.95 

0.95 
0.95 
0.95 

0.95 
0.95 
0.95 

0.95 
0.95 
0.95 

0.95 
0.95 
0.95 

0.95 
0.95 
0.95 

0.95 
0.95 
0.95 

7.64 
7.00 
7.00 

7.64 
7.00 
7.00 

7.64 
7.00 
7.00 

7.64 
7.00 
7.00 

7.64 
7.00 
7.00 

7.64 
7.00 
7.00 

7.64 
7.00 
7.00 

7.64 
7.00 
7.00 

4.77 
4.80 
4.80 

4.77 
4 3 0  
4.80 

4.77 
4.80 
4.80 

4.13 
4.10 
4.10 

4.77 
4.80 
4.80 

4.77 
4.80 
4.80 

4.77 
4.80 
4.80 

5.09 
5.10 
5.10 

1358 
1358 
1358 

1392 
1392 
1392 

1403 
1403 
1403 

1426 
1426 
1426 

1378 
1378 
1378 

1359 
1359 
1359 

1386 
1386 
1386 

1405 
1405 
1405 

571 
599 
561 

5 76 
611 
572 

583 
62 1 
582 

615 
652 
586 

642 
663 
633 

650 
672 
645 

696 
711 
688 

709 
709 
691 

625 
624.9 
625.1 

638 
637.7 
638.3 

648 
647.7 
647.7 

699 
698.9 
699.3 

687 
687.4 
686.7 

695 
695.4 
694.8 

734 
734.0 
734.4 

726 
726.2 
726.2 

6.00E-04 
6.41E-04 
6.4 1E-04 

1.10E-03 
1.17E-03 
1.16E-03 

1.40E-03 
1.41E-03 
1.4 1 E-03 

2.40E-03 
3.673-03 
3.673-03 

9.00E-04 
9.15E-04 
9. EE-04 

6.00E-04 
6.533-04 
6.533-04 

1.00E-03 
1.05E-03 
1.05E-03 

1.30E-03 
1.05E-03 
1.05E-03 

1.00E11 
1.07Ell 
1.05E11 

6.30E10 
6.69310 
6.36310 

3.40E10 
3.59310 
3.58310 

1.40E09 
2.16309 
2.10E09 

1.20E09 
1.20E09 
1.26309 

4.90308 
4.88308 
5.12308 

6.20E07 
6.34307 
6.19307 

1.30E08 
1.04E08 
1.04E08 
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As can be seen from Table 4-3, the model predictions compare 

favorably with the trend in the experimental data. Notice that the 

supersaturation ratios obtained by both the constant and variable thermal 

diffusivity temperature profiles have approximately the same distance to the 

outer boundary as that in the experiments. However, 12, the temperature 

required to match Tn, is greater for the constant cy temperature profile. This 

is expected because in order for the two temperature profiles to be similar 

near the point of nucleation, T2 needs to be raised for the steady state 

temperature profile. This comparison is limited by the fact that because of 

the matched temperatures, the vapor pressure at  the point of nucleation is 

identical for all three cases, and therefore, the only difference in the 

supersaturation ratio would be due to the difference in partial pressure. 

These results do not prove that the hollow sphere model is totally 

accurate in calculating the supersaturation ratio since the model has been 

compared with only one system. However, the results do show that there is 

a strong possibility that the hollow sphere model can be used to  predict a 

range of supersaturation ratios where nucleation is expected to occur. It must 

be noted that the question of which temperature profile is more accurate 

cannot be determined theoretically; therefore, the temperature profile must be 

carefully monitored in the upcoming experiments because it appears that the 

temperature profile has a significant effect on the supersaturation ratio. 

8 

61 



Chapter 5 

e 

'e  

e 

a 

e 

e 

a 

e 

e 

CONCLUSIONS 

The hollow sphere model has been developed so that a range of 

supersaturation ratios can be determined. Also, the effects of each parameter 

on the supersaturation ratio has been examined. A comparison with available 

experimental data shows that the hollow sphere model may predict 

supersaturation ratios with some accuracy, but much more experimental data 

are needed before any final conclusions can be made. 

It has been shown that the supersaturation ratio is significantly 

dependent on the temperature profile, which depends on the temperature at 

the inner and outer spheres and on the radii of the inner and outer spheres. 

It appears that the temperature at the outer sphere has the greatest impact 

on the supersaturation ratio: the lower the outside temperature, the faster 

the supersaturation ratio increases and the larger the maximum value of the 

supersaturation ratio. The radius of the inner sphere 'also has a large impact 

on the supersaturation ratio: the smaller the radius, the faster the 

supersaturation ratio increases and the larger the maximum value of the 

supersaturation ratio. But, the effect of the change in the inner radius is 

not as dramatic as that of the change in the temperature at the outer 

sphere. 

During the actual experiment, however, the expected procedure is to 

increase the temperature at the inner sphere with each successive run. 
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Increasing this temperature will raise the maximum value of the 

supersaturation ratio, but once again, the change is not as dramatic as that 

of the change in the temperature at the outer sphere. 

A comparison of the two temperature profiles, one with constant a 

and one with variable a, shows that the supersaturation ratio is depressed 

for variable a when the same conditions are used as for constant a. 

Therefore, it is much more likely for nucleation to occur if the constant Q 

temperature profile were the more representative of the actual temperature 

profile achievable in the experimental apparatus. 

Since the supersaturation ratio is dependent on the temperature of 

the system, it is imperative that the temperature profile in the experimental 

chamber be carefully monitored. Also, careful documentation of all future 

experiments must be recorded so that some of the guess work is deleted 

when comparing experimental data with model predictions. Most importantly, 

more experiments must be performed so that more experimental data can be 

examined, and the nucleation of refractory metal vapors can be better 

understood. 

0 

0 
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Appendix - A  
General Properties 

The following is a list of the general properties of the elements used 

in this study [ l S ] .  

Argon 

Molecular weight 39.948 g/g-mol 
Heat capacity constants [15] Acp = 4.969 

= -O.767* BCP 
= 1.234*10-8 cCP Dcp = 0.0 

Hydrogen 

Molecular weight 2.016 g/g-mol 
Heat capacity constants [15] Acp = 6.483 

B(;p = 2.215X10-3 

Ccp = -3.298X10-6 

DQ, = 1 .826X10-9 

Krypton 

Molecular weight 

Magnesium 

Molecular weight 
Melting point 
Boiling point 
Antoine constants [19] 

Neon 

Molecular weight 

83.800 g/g-mol 

24.312 g/g-mol 
922 K 

1363 K 
A,, == 8.589 
B, =-7527 

20.183 g/g-mol 
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Silver 

Molecular weight 107.868 g/g-mol 

Antoine constants [20] A v =  8.924812 
Boiling point 2485 K 

B, = -14464.154 
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Thermal Diffusivity 

The calculation of the steady state temperature profile developed in 

Section 2.1.2 requires knowledge of the temperature dependence of the 

thermal diffusivity. This dependence is determined by the properties of the 

inert gas in the chamber since the concentration of the refractory vapors is 

very low and is not expected to affect the thermal diffusivity. The thermal 

diffusivity is defined by the following equation 

k 
c y = - -  

P C P  

where cy is the thermal diffusivity with units cm2/s, k is the thermal 

conductivity with units cal/(cm-s-K), p is the molar density with units 

g-mol/cm3 and C, is the heat capacity with units cal/(g-mol-K). 

The molar density is calculated using the ideal gas law: 

P 
p = -  RT 

where T is in degrees Kelvin, P has units of torr and R is the gas constant 

with units of cm3-torr/(g-mol-K). 

= 

The heat capacity is assumed to depend on temperature according to 

the relationship: 
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Cp = A,+ B,T+ C,T2 + D,T3 
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where ACp, BCp, Ccp and Dcp are constants listed in Appendix A. 

Argon 

A linear relationship is often used for the temperature dependence of 

the thermal conductivity: 

A plot of k vs. T for argon can be divided into three linear sections [21]. 

The first section is for temperatures less than 350 K and is represented by: 

kAr = 3.5114967~10-~  + 1.2992085xlO-'T (B.5) 

The second section is for temperatures between 350 K and 600 K and 

follows the relationship: 

kAr = 1.5159706~10-~  + 9.5151565~ 10-8T 

For temperatures above 600 K,  the following relationship is used: 

kAr = 2.7637119~ lo-' + 7.4903601 x 10-'T 
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Next, the thermal diffusivity can be calculated as a function of 

temperature and pressure. If we plot cr vs. T on log-log paper over the 

entire temperature range, we get the following approximate relationship: 

~ 1 . 7 3  

aAr = 8 . 3 2 ~ 1 0 - ~ -  P 

a 

0 

e 

a 

This equation is used to determine the effect of the thermal diffusivity on 

the temperature profile as calculated in Section 2.1.2. 

Krypton 

The specific heat of krypton is assumed to be constant over the 

temperature range of 10 K < T < 6200 If. Therefore Cp is given by the 

following equation: 

5R c =  - = 0.059284 
'KT  2 lVKr 

where R is the gas constant in units of cal/g-mol-K and M, is the 

molecular weight of krypton [22]. 

The thermal conductivity for krypton is given by the following 

equation: 

105kKr = 9 . 0 6 9 2 6 ~  + 8 . 3 3 6 1 3 ~  10-3T - 2 . 8 7 1 1 7 ~  10-6T2 (B.10) = 

where k is in cal/cm-s-K and T is in degrees Kelvin [21]. 
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If Q vs. T is plotted on log-log paper, the following approximate 

relationship is given for the thermal diffusivity: 

~ 1 . 7 5  
aKr = 4 . 0 2 3 6 ~  - P (B. l l )  

Neon 

The specific heat of neon is assumed to be constant over the 

temperature range of 10 K < T < 8000 K. Therefore, Cp is given by the 

following equation: 

5R c = - -  - 0.24615 
pNe 2MNe 

(B.12) 

where R is the gas constant in units of cal/g-mol-K and M,, is the 

molecular weight of neon (221. 

The thermal conductivity for neon is given by the following equation: 

105kNe = 0.49159 + 5 .47196~10 ' -~T-  7.1979x10-'T2 + 

5 . 0 6 1 7 2 ~ 1 0 - ~ T ~  (B.13) 

where k is in cal/cm-s-K and T is in degrees Kelvin [21]. 

If Q vs. T is plotted on log-log paper, the following approximate 

relationship is given for the thermal diffusivity: 

71 



T 1.8 

aNe = 1.3298X10-2- P (B.14) 

If eqn.(B.8), eqn.(B.11) and eqn.(B.14) are compared, the temperature 

dependence is approximately the same for each element; therefore, the inert 

gas should not have a significant effect the temperature profile developed in 

Section 2.1.2. 

. 

* 
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Appendix C’ 
Molecular Diffusion Coefficient 

The general equation used to calculate the diffusion coefficient for 

species A in a binary gas mixture is given by [15]: 

T 1.5 (MA + MB) 0.5 
DA-B = 1.858~10-~ 

Pu2,-,R,( MA111B)0.5 

where : 

DA-B = diffusion coefficient for components A and B ,  cm 2 /s 

T = temperature, K 
P = total pressure, atm 
u = characteristic length, angstroms 
f l D  = diffusion collision integral, dimensionless 
MA = molecular weight of component A ,  g/g-mole 
MB = molecular weight of component B ,  g/g-mole 

with: 

A C E G n, = - + + + (T*)B exp(Df) exp(FT*) exp(Hf) 

where 

A = 1.06036 
B = 0.15610 

E = 1.03587 
F = 1.52996 
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C = 0.19300 
D = 0.47635 

G = 1.76474 
H = 3.89411 

The Lennard-Jones parameters are given by: 

C . l .  Magnesium-Argon System 

The values used to calculate the diffusion coefficient for the 

magnesium-argon system were 

aMg = 2.72 angstroms 
uAr = 3.542 angstroms 

%! = 1.15Tb = 1.15(1363) = 1567.6K k 
€ A ,  - = 93.3K k 

MMg = 24.305g/g-mole 
MAr = 39.948g/g-mole 

By using eqn.(C.3) and eqn.(C.4) 
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O M ~ - A ~  = 3.131 angstroms 

‘Mg-  Ar  - -  - 382.44K k 

Therefore, eqn.(C.l) becomes: 

0 

T 1.5 

DMg-Ar = 4 . 8 7 7 ~  
mL) 

C.2. Magnesium-Krypton 

Following the same procedure as in Appendix C . l ,  eqn.(C.3) and 

eqn. (C.4) become: 

Q ~ - K ~  = 3.1875 angstroms 

‘Mg-Kr  
k 

- -  - 529.5693K 

e 

Therefore, eqn.( C . l )  becomes: 
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C.3. Magnesium-Neon 

Following the same procedure as in Appendix C. l ,  eqn.(C.3) and 

eqn. (C.4) become: 

oMg-Ne = 2.77 angstroms 

' Mg- Ne - = 226.7538K k 

Therefore, eqn.(C.l) becomes: 

e 

m1.5 
1 -~ 

DMgg-Nc = 7 . 2 9 2 6 8 ~  
mD 

C.4. Silver-Hydrogen 

Following the same procedure as in Appendix C. l ,  eqn.(C.3) and 

eqn.(C.4) become: 

U A ~ - H ~  = 2.8545 angstroms 

Ag-Hz 

k 

€ 

- -  - 413.05K 

Therefore, eqn.(C.l) becomes: 

T 1.5 

= 7 . 2 9 2 6 8 ~  
mD 

D A p - H z  



Appendix . D  

e 

e 

Computer Program 

PROGRAM SUP - -  SAT P (input, output); 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
(* *I 
(* 
(* 
(* 
(* 

This program calculates the supersaturation ratio for a gaseous *) 
Mg & Ar system using an equation from Crank(p.100) for a hollow *) 
sphere with an inside radius of R1 and an outside radius of R2. *) 
The equation is used to calculate the temperature profile and *) 

(* the partial pressure profile. *I 
(* *I 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

const pi = 3.1415927; gasR = 82.06; (* crn-3-atm/mol-deg.K*) 
A = 1.06036; 
E = 0.19300; 
G = 1.03587; 
J = 1.76474; 

B = 0.15610; 
F = 0.47635; 
H = 1.52996; 
L = 3.8941.1; 

var i: integer; 
ss,time,tirnel,r,Rl,R2,R3: real; 
sine,expo,T,Tl,T2,P,Tex,Tx,Pp,Pv,Ssat,log: real; 
ssP,ad,D,ad - summ,summ,Pl,omega,ek,T3: real; 
response: char; 

procedure introduction(var P,Tl,T2,timel,Rl,R2,R3: real); 

begin 
writeln(’Supersaturati0n Ratio for Mg & Ar’); 
write1n;writeln; 
write(’Se1ect the ambient gas pressure(mmHg): ’); 
readln(P) ; writeln; 
write(’Se1ect the hot temperature surface(deg. K): ’); 
readln(T1) ; writeln; 
write( ’Select the cold temperature surface(deg. K) : ’) ; 
readln(T2) ; writeln; 
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write ( ’Select the time step(sec) : ’) ; 
readln(time1) ; writeln; 
write ( ’Select the inner radius (cm) : ’) ; 
readln(R1) ; writeln; 
write ( ’Select the outer radius (cm) : ’) ; 
readln(R2) ; writeln; 
write(’Se1ect the step size for the radius(cm): ’); 
readln(R3);writeln;writeln;writeln; 
end; 

procedure heading; 
0 

a 

e 

begin 
writeln(’SUPERSATURATI0N RATIO FOR Mg C Ar’); 

write1n;writeln; 
writeln(’Gas Hemisphere Radius = ’, R2:19:1,’ cm’); 
writeln(’Hot Surface Radius = ’, Rl:l9:1,’ cm’); 
writeln(’Ambient Gas Pressure = ’, P:l9:1,’ mmHg’); 
writeln(’Temperature: hot surface 
writeln(’ 
write1n;writeln; 
writeln(’Temperature excess above the cold surface: Tex(deg. K)’); 
writeln(’Distance from hot surface: r(cm) ’) ; 
write1n;writeln; 
writeln(’t’:3,’r’:6,’T’:1O,’Pp’:ll,’Pv’:ll,’Ssat’:l2,’log(Ssat)’:l3); 
writ eln ( ’ (sec) ’ : 5, ’ (cm) ’ : 5, ’ (deg . K) ’ : 11 , ’ (rndg) ’ : 10, ’ (rnmHg) ’ : 11) ; 

1 ;  writeln(’---------------------------------’ 

= ’,T1:15:1,’ deg. K’); 
cold surface = ’,T2:15:1,’ deg. K’); 

‘1 ; write(’----------------------------------------------------------- 
writeln(’--------- ’> ; 
wr i teln ; 
end; 

procedure diff - coef(T,P:real; var D:real); 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
(* *I 

*> 
*I 

(* diffusion coefficients calculated in Appendix C *I 
*) 

(* *) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

(* 
(* 

(* 

The diffusion coefficient for the Mg-Ar system is 
calculated in Appendix C. Also, any of the other 

may be substituted in this procedure. 

begin 
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ek:= 382.44; (* deg.K *) 
T3:= T/ek; 
omega: = A/exp (B*ln (T3)) + E/exp (F*T3) + G/exp (H*T3) + J/exp (L*T3) ; 
D:= 4.877E-05*exp(l.S*ln(T)) *760/ (P*omega) (* cmA2/sec *) 

end; 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
(* *I 
(* The partial pressure profile is calculated using an *I 
(* equation from Crank (p. 100) . *I 
(* *I 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

procedure ss - pres(r,Rl,R2:real; var ssP:real); 

begin 

end; 
ssP:= (Rl/(r+Rl)) * ((R2-(r+Rl))/(RZ-R1)) (* torr *) 

procedure pres(r,Rl,R2,time,D:real; var ad - summ:real); 

begin 
ad:= 0; 
i:= 0; 
REPEAT 

i .- .- i + 1; 
sine:= sin(i*pi*r/(R2-R1)); 
expo:= exp(-D*sqr (i*pi) *time/sqr (R2-Rl)) ; 
summ:= (2/pi) * (Rl/(r+Rl)) * (l/i) *sine*expo; 
ad:= ad + summ; 

UNTIL abs(summ) < 1.OE-20; 
ad summ:= ad; - 

end ; 

procedure temp (r,Rl,R2:real; var T:real); 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
(* *I 
(* This steady state profile is calculated assuming constant *I 
(* thermal diffusivity. If eqn.(2.23) is substituted here then *I 

(* can be calculated. *I 
(* *I 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

(*  the temperature profile assuming variable thermal diffusivity *) 
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begin 
s s : =  (Rl/(r+Rl))*((R2-(r+Rl))/(R2-R1)) ; 
T:= (Tl-T2)*ss + T2 (* deg.K *) 

end; 

procedure vapor(T: real; var Pv: real); 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
(* *) 

(* *I 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

(* The vapor pressure is calculated using the Antoine equation *) 
(* with the constants obtained from Nesmeyanov (pp. 175-179). *) 

begin 
Pv:= exp(2.3025851*(8.589 - (7527/T))); (* torr *) 

end; 

procedure ratio(Pp,Pv: real; var Ssat,log: real); 

begin 
Ssat:= Pp/Pv; 
if Ssat <= 0 then 

else 
log:= 0 

log : = In (Ssat) /2.3025851 
end ; 

procedure iteration(Rl,R2,R3,Pl:real;var time,D,Pp,Pv,Ssat,log:real); 

begin 
r:= r + R3; 
temp (r ,R1, R2, T) ; 
Tex:= T-T2; 
diff coef (T,P,D) ; 
ss p;es(r,Rl,R2,ssP) ; 
pres (r , R1, R2, time , D , ad - summ) ; 
Pp:= Pl*(ssP - ad summ); 
if Pp < 1.OE-7 then 
Pp:= 0.0; 

vapor (T,Pv) ; 
ratio (Pp ,Pv, Ssat , log) ; 
if time=15 then 
writeln(time:4: l,r:6: l,T: ll:4,Pp: ll,Pv:ll,Ssat: 11,log:ll) ; 
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end; 

BEGIN {main program} 
REPEAT 
introduction(P,T1,T2,timel,Rl,R2,R3); 
heading ; 
T:= T1; 
vapor (T, Pv) ; 
P1:= Pv; 
Pp:= Pv; 
time:= 0; 
r:=O; 

if time = 0 then 
begin 

TX := T-T2 ; 

While r <= (R2-Rl-R3) do 
begin 
if r= 0 then 
begin 
vapor (T,Pv) ; 
Pp:= Pv; 
ratio(Pp,Pv,Ssat,log) ; 
writeln (time : 4 : 1, r : 6 : 1, T: 11 : 4 ,Pp : 11, Pv : 11, Ssat : 11, log : 11) ; 
end; 
r:= r + R3; 
T:= T2; 
diff - coef (T,P,D) ; 
Pp:= 0; 
vapor (T, Pv) ; 
ratio (Pp ,Pv, Ssat , log) ; 
Tx:= T - T2; 
end; 
end; 
REPEAT 
writeln; 
T:= T1; 

r:= 0; 
time:=time + timel; 
While r <= (R2-Rl-R3) do 
begin 

end; 
UNTIL (time = 15); 

Pp:= P1; 

iteration (R1 , R2 ,R3 ,P1, time ,D ,Pp,Pv, Ssat , log) ; 
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w r i t e l n ;  
wri te(’Do you want another  i t e r a t i o n ?  ’ ) ;  readln( response) ;  
UNTIL response <> ’ y ’  

END. 

\ 

a 

a 

e 
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